Generalized sampling: stable reconstructions, inverse problems and compressed sensing over the continuum
نویسندگان
چکیده
The purpose of this paper is to report on recent approaches to reconstruction problems based on analog, or in other words, infinite-dimensional, image and signal models. We describe three main contributions to this problem. First, linear reconstructions from sampled measurements via so-called generalized sampling (GS). Second, the extension of generalized sampling to inverse and ill-posed problems. And third, the combination of generalized sampling with sparse recovery techniques. This final contribution leads to a theory and set of methods for infinite-dimensional compressed sensing, or as we shall also refer to it, compressed sensing over the continuum.
منابع مشابه
Generalized Sampling and Infinite-Dimensional Compressed Sensing
We introduce and analyze an abstract framework, and corresponding method, for compressed sensing in infinite dimensions. This extends the existing theory from signals in finite-dimensional vectors spaces to the case of separable Hilbert spaces. We explain why such a new theory is necessary, and demonstrate that existing finite-dimensional techniques are ill-suited for solving a number of import...
متن کاملSubspace and Bayesian Compressive Sensing Methods in Imaging
Compressive sensing is a new field in signal processing and applied mathematics. It allows one to simultaneously sample and compress signals which are known to have a sparse representation in a known basis or dictionary along with the subsequent recovery by linear programming (requiring polynomial (P) time) of the original signals with low or no error [1, 2, 3]. Compressive measurements or samp...
متن کاملA Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملInfinite dimensional compressed sensing from anisotropic measurements
In this paper, we consider a compressed sensing problem in which both the measurement and the sparsifying systems are assumed to be frames (not necessarily tight) of the underlying Hilbert space of signals, which may be finite or infinite dimensional. The main result gives explicit bounds on the number of measurements in order to achieve stable recovery, which depends on the mutual coherence of...
متن کاملOn asymptotic incoherence and its implications for compressed sensing for inverse problems
Recently, it has been shown that incoherence is an unrealistic assumption for compressed sensing when applied to infinite-dimensional inverse problems. Instead, the key property that permits efficient recovery in such problems is so-called asymptotic incoherence. The purpose of this paper is to study this new concept, and its implications towards the design of optimal sampling strategies. In pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1310.1141 شماره
صفحات -
تاریخ انتشار 2013